Álgebra Linear

Primeiro semestre

202I-2022

Aula 06

Se $A \in \mathbb{K}^{n \times n}$ então, existe a inversa de A se e só se os sistemas:

$$A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \qquad \cdots \qquad A\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

forem todos possíveis e determinados (dada a unicidade da inversa). Note-se que se tem em geral que $AB_{*,j} = (AB)_{*,j}$ pelo que uma solução do primeiro sistema fornece a primeira coluna da inversa, do segundo, a segunda coluna da inversa, etc.

Note-se que são n sistemas de equações que partilham a mesma matriz de coeficientes pelo que podem ser todos resolvidos em simultâneo:

$$Ax = b_1$$

$$Ax = b_2$$

$$Ax = b_2$$

$$Ax = b_2$$

$$Ax = b_1$$

$$Ax = \bar{b}_2$$

$$Ax = b_n$$

$$Ax = b_n$$

$$\bar{A}x = \bar{b}_1$$

$$\bar{A}x = \bar{b}_2$$

$$\bar{A}x = \bar{b}_2$$

$$\bar{A}x = \bar{b}_2$$

No caso da determinação da inversa e tendo em conta os sistemas que temos que tentar resolver somos conduzidos à seguinte matriz:

$$\begin{bmatrix} A & \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = [A \mid \mathbb{I}]$$

Lema.—Considere-se $A \in \mathbb{K}^{n \times n}$. Se $[\bar{A} \mid \bar{b}]$ é a matriz em escada de linhas que se obtém de $[A \mid \mathbb{I}]$ tem-se:

Se $car(A) = car(\bar{A}) < n$ então A não tem inversa.

Se $car(A) = car(\bar{A}) = n$ então, obtendo a matriz em escada de linhas reduzida de $[\bar{A} \mid \bar{b}]$, essa matriz é do tipo $[\mathbb{I} \mid B]$ e, nesse caso $A^{-1} = B$.

Problema 2.18.— Nos casos seguintes, determine a matriz A:

(a)
$$A^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$
 (b) $6A^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ (c) $(8A^{\mathsf{T}})^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$ (d) $(1 - 2A)^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$

Problema 2.19.— Sejam $\mu \in \mathbb{R}$ e

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 4 & \mu \\ 3 & \mu^2 & \mu \end{bmatrix}.$$

Determine:

- (a) A característica de A_{μ} em função de μ .
- (b) A inversa de A_{μ} para $\mu = 1$.

Problema 2.20.— Considere a matriz

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (a) Mostre que A é invertível e calcule A^{-1} .
- (b) Resolva a equação: A^2 u = $[1 \ 2 \ 3]^T$;

Critério de invertibilidade

Теокема.—Consideremos $A \in \mathbb{K}^{n \times n}$. São equivalentes:

A é invertível.

 $Nuc(A) = \{ \mathbb{O} \};$

car(A) = n;

para qualquer b, o sistema Ax = b é possível e determinado.

Invertibilidade das matrizes elementares

Теокема.—As matrizes elementares são todas invertíveis. Mais precisamente:

$$(E^{(i,j)})^{-1} = E^{(i,j)}$$

$$(E^{(i,j)}(\alpha))^{-1} = E^{(i,j)}(-\alpha)$$

$$(E^{(i)}(\alpha))^{-1} = E^{(i)}(1/\alpha)$$

Problema 2.16.— Considere a matriz

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 0 & 1 \\ 0 & -2 & 0 \end{bmatrix}.$$

- (a) Encontre matrizes elementares E_1, E_2, E_3 tais que $E_3E_2E_1A = 1$.
- (b) Escreve A^{-1} como um produto de três matrizes elementares.
- (c) Escreva A como produto de três matrizes elementares.

Problema 2.22.— Seja A uma matriz quadrada tal que $A^2 = A$.

- (a) Mostre que $(1 A)^2 = (1 A)$.
- (b) Calcule $(1 2A)^2$, verifique que (1 2A) é invertível. Calcule $(1 2A)^{-1}$.