Álgebra Linear

Primeiro semestre

202I-2022

Aula 04

Método de eliminação de Gauss

O algoritmo para a resolução de sistemas de equações lineares envolve um método conhecido como **método de eliminação de Gauss** que vamos agora descrever.

O método de eliminação de Gauss consiste numa algoritmo que toma como ponto de partida a matriz aumentada $[A \mid b]$ de um sistema e a transforma na matriz aumentada $[\bar{A} \mid \bar{b}]$ de um sistema equivalente ao primeiro (i.e. com as mesmas soluções) mas de resolução trivial.

Pivôs de uma matriz

Definicao.—O primeiro elemento não nulo numa linha de uma matriz *A* diz-se o **pivô** dessa linha.

Exemplo.—Na matriz A, a primeira linha não tem $piv\hat{o}$, o $piv\hat{o}$ da segunda linha é a entrada $A_{2,3}=1$, o $piv\hat{o}$ da terceira linha é a entrada $A_{3,1}=1$, e o $piv\hat{o}$ da quarta linha é a entrada $A_{4,2}=1$.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

Matriz em escada de linhas

Definição.—Uma matriz $A \in \mathbb{K}^{m \times n}$ diz-se **em escada de linhas** se verifica todas as condições seguintes:

Linhas nulas que eventualmente existam, são as últimas linhas da matriz

Se $A_{1,j_1}, A_{2,j_2}, \ldots, A_{s,j_s}$ (onde $s \le m$) é a sequência de pivôs de A, começando pela primeira linha, tem-se $j_1 < j_2 < \cdots < j_s$.

Ou seja, percorrendo os pivôs da matriz, partindo da primeira linha, os índices de coluna das posições que contêm os pivôs aumentam sempre estritamente.

Matriz em escada de linhas [exemplos]

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

A matriz A não se encontra em escada de linhas porque abaixo de uma linha de zeros existe uma linha não nula, ou seja, não se verifica a primeira condição.

A matriz *B* não se encontra em escada de linhas porque a sequência dos índices das colunas que contêm os pivôs é 1,3,2, ou seja, não é estritamente crescente, viola-se assim a segunda condição.

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A matriz C está em escada de linhas.

Operações do método de eliminação de Gauss

As operações que integram o método de eliminação de Gauss são três, designam-se de **operações elementares** e são as que se descrevem a seguir:

Trocar duas linhas.

A troca da linha r com a linha s indica-se: $L_s \leftrightarrow L_r$.

Multiplicar uma linha por um escalar não nulo.

Multiplicar por $\alpha \neq 0$ a linha s indica-se αL_s .

Adicionar a uma linha outra previamente multiplicada por um escalar.

Adicionar à linha r a linha s multiplicada por α indica-se $L_r + \alpha L_s$.

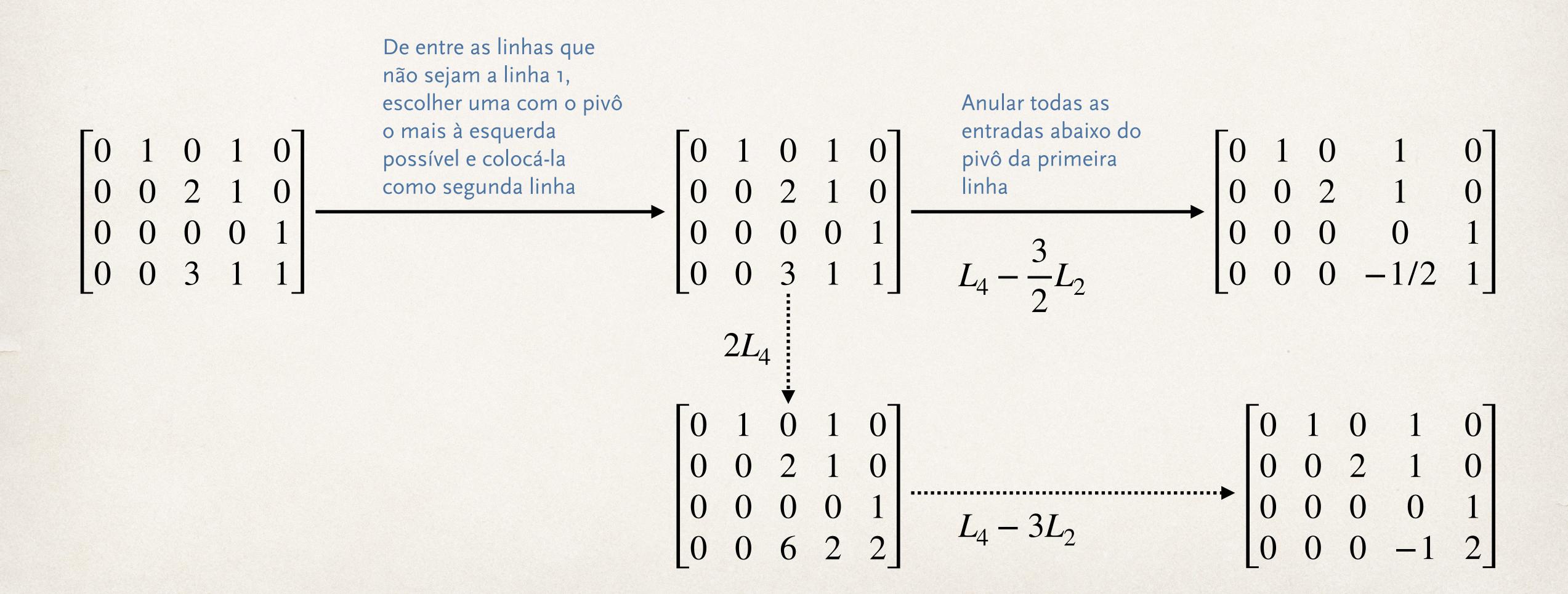
(Note-se que o resultado da operação fica guardado na linha r.)

Método de eliminação de Gauss [exemplo]

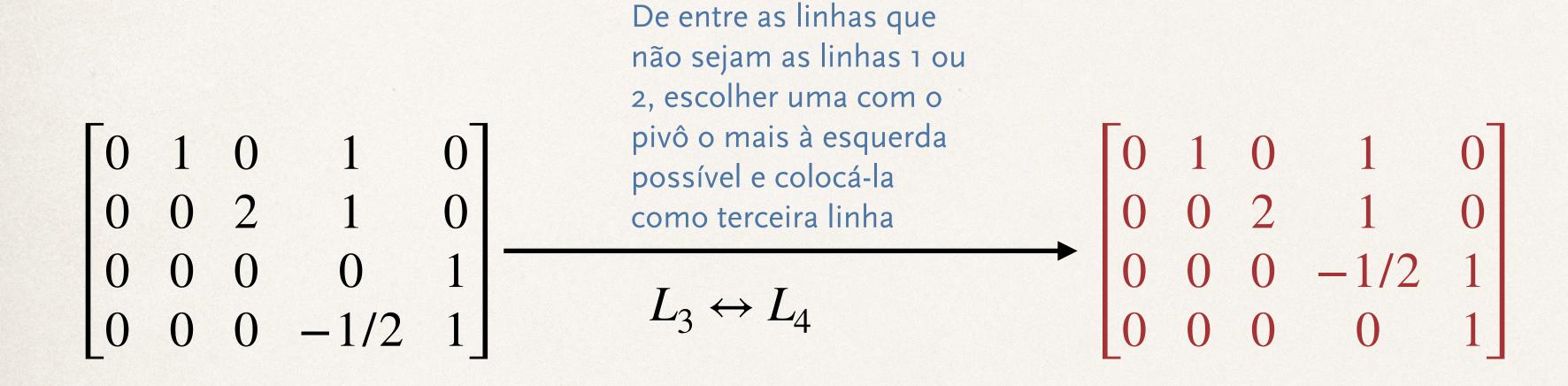
Transformar a matriz A numa matriz em escada de linhas usando o método de eliminação de Gauss.

$$A = \begin{bmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Colocar na primeira linha uma linha com o pivô o mais à esquerda possível}} \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Colocar na primeira linha uma linha com o pivô o mais à esquerda possível}} \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Anular todas as entradas abaixo do pivô da primeira linha}} \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 3 & 1 & 1 \end{bmatrix}$$

Método de eliminação de Gauss [exemplo]



Método de eliminação de Gauss [exemplo]



A importância do método de eliminação de Gauss

Теоrема—Se a matriz $[B \mid c]$ se obtém da matriz $[A \mid b]$ depois da aplicação de uma sequência de operações elementares então, os sistemas representados por $[A \mid b]$ e $[B \mid c]$ são equivalentes, ou seja, têm as mesmas soluções.

O algoritmo de eliminação de Gauss permite, **usando apenas operações elementares**, transformar qualquer matriz numa matriz em escada de linhas e, desta forma, tornar possível a resolução de qualquer sistema de equações lineares.

Problema 2.7.— Escreva as matrizes aumentadas dos sistemas de equações linea- © ESD res, não-homogéneos, e resolva-os utilizando o método de eliminação de Gauss.

(a)
$$\begin{cases} -2v + 3w = 1 \\ 3u + 6v - 3w = -2 \\ 6u + 6v + 3w = 5 \end{cases}$$
 (b)
$$\begin{cases} w + 2x - y = 4 \\ x - y = 3 \\ w + 3x - 2y = 7 \\ 2u + 4v + w + 7x = 9 \end{cases}$$
 (c)
$$\begin{cases} w + 2x - y = 4 \\ x - y = 3 \\ w + 3x - 2y = 7 \\ 2u + 4v + w + 7x = 9 \end{cases}$$

Problema 2.8.— Determine a natureza de cada um dos seguintes sistemas de equações lineares em função dos respectivos parâmetros.

(a)
$$\begin{cases} \alpha x + \beta z = 2 \\ \alpha x + \alpha y + 4z = 4 \\ \alpha y + 2z = \beta \end{cases}$$
 (b)
$$\begin{cases} -2z = 0 \\ cy + 4z = d \\ 4x + 5y - 2z = -2 \end{cases}$$
 (c)
$$\begin{cases} x + y + z = 4 \\ z = 2 \\ (a - 4)z = a - 2 \end{cases}$$

Рковьема 2.4.— Resolvendo um sistema de equações lineares, determine um polinómio de grau menor ou igual a 2 cujos valores em x = 1, x = -1 e x = 2 são, respetivamente, 3, 3 e 9.

Problema 2.10.— Considere o sistema de equações lineares nas variáveis x, y e z © AL representado pela matriz aumentada

$$\begin{bmatrix} 5 & 0 & -1 & \mu \\ 2 & -5 & -3 & 1 \\ 0 & 0 & \lambda & 0 \end{bmatrix}$$

Faça a discussão do sistema em função dos parâmetros λ e μ . A resposta correcta é:

- (A) O sistema é determinado sse $\lambda \neq 0$; e é indeterminado sse $\mu = 5/2$.
- (B) O sistema é determinado sse $\lambda \neq 0$; e é impossível sse $\lambda = 0$.
- (C) O sistema é determinado sse $\lambda \neq 0$; e é indeterminado sse $\lambda = 0$.
- (D) O sistema é possível sse $\lambda \neq 0$; e é impossível sse $\lambda = 0$.